text to vector to text to image¶
training data¶
- lot's of data
- laion-5b dataset
- 5.85 billion image-text pairs.
- train the entire model?
- a hard drive of 240TB
- 32 x 8 x A100 GPUs
- cost: approx $ 600,000
- carbon cost: 11,250 kg CO2
- = ± 2.5 cars driving 15,000 km/year
- laion-5b dataset
note: if you rent a special PC with massive specs it will still take over a week to just download the data
training on data¶
the latent space, a gut-feeling approach:
model ==> encoding (a vector/coordinate):
latent space: cats and dogs¶
note: dichtheid op landkaart = vectoren die dicht liggen bij elkaar ==> afbeeldingen die veel gelijkenis vertonen enter LEXICA.art ==> zoeken naar LAIKA in space
latent space: cats and dogs¶
latent space: cats and dogs¶
note: our AI encoder gave us a sequence of numbers, so we can position the dog on the landmap
latent space: cats and dogs¶
latent space: cats and dogs¶
latent space: cats and dogs¶
latent space: cats and dogs¶
latent space: cats and dogs¶
latent space: cats and dogs¶
latent space: cats and dogs¶
latent space: cats and dogs¶
latent space: cats and dogs¶
latent space: IN BETWEEN cats and dogs¶
Different diffusion AI models¶
DALL-E2 MidJourney Stable Diffusion ...